01. Show that w=z+ezw=z+ez is analytic and find dwdz.
Ans: w=f(z)=z+ez⟹u+iv=(x+iy)+e(x+iy)=(x+iy)+ex⋅eiy=(x+iy)+ex(cosy+isiny) ⟹u=x+excosy;v=y+exsiny ⟹ux=1+excosy;vx=exsiny ⟹uy=−exsiny;vy=1+excosy From the above set of equations we have ux=vy;vx=−uy, hence u,v satisfies the CR-equations, Hence f is analytic
To find dwdz: Differentiate w=f(z)=u+iv with respect to x (derivative horizontally)
⟹dwdz=f′(z)=ux+ivx=1+excosy+iexsiny=1+ex(cosy+isiny)=1+exeiy=1+ex+iy=1+ez
02. Show that w=sinz is analytic and hence find dwdz.
Ans: w=f(z)=sinz⟹u+iv=sin(x+iy)=sinxcosiy+cosxsiniy (we know that sinix=isinhx,cosix=coshx) ⟹u+iv=sinxcoshy+icosxsinhy ⟹u=sinxcoshy;v=cosxsinhy ⟹ux=cosxcoshy;vx=−sinxsinhy ⟹uy=sinxsinhy;vy=cosxcoshy From the above set of equations we have ux=vy;vx=−uy, hence u,v satisfies the CR-equations, Hence f is analytic
03. Construct the analytic function f(z)=u+iv given that u=log√(x2+y2)
Ans:
Let f(z)=u+iv, since f is analytic, u,v satisfies CR-equations and we have u only, hence we have f′(z)=ux+ivx=ux−iuy Now u=log√(x2+y2)=log(x2+y2)1/2=12log(x2+y2) ⟹ux=122xx2+y2uy=122yx2+y2 ⟹f′(z)=122xx2+y2−i122yx2+y2 Now substitute x=z and y=0 in the above equation we get f′(z)=1/z⟹f(z)=log(z) Verified using Maple
04. Construct the analytic function f(z)=u+iv given that u=e2x(xcos2y−ysin2y)
Ans:
Let f(z)=u+iv, since f is analytic, u,v satisfies CR-equations and we have u only, hence we have f′(z)=ux+ivx=ux−iuy ⟹ux=2e2x(xcos2y−ysin2y)+e2x(cos2y)uy=e2x(−2xsin2y−sin2y−2ycos2y) ⟹f′(z)=(2e2x(xcos2y−ysin2y)+e2x(cos2y))+i(e2x(−2xsin2y−sin2y−2ycos2y)) Now substitute x=z and y=0 in the above equation we get f′(z)=2e2zz+e2z+i(0)=e2z(1+2z)⟹f(z)=(1+2z)e2z2−e2z2+c=ze2z+c
05. Construct the analytic function f(z)=u+iv given that v=ex(xsiny+ycosy)
Ans:
Let f(z)=u+iv, since f is analytic, u,v satisfies CR-equations and we have v only, hence we have f′(z)=ux+ivx=vy+ivx ⟹vx=ex(xsiny+ycosy)+ex(sin(y))vy=ex(xcosy+cosy−ysiny) ⟹f′(z)=(ex(xcosy+cosy−ysiny))+i(ex(xsiny+ycosy)+ex(sin(y))) Now substitute x=z and y=0 in the above equation we get f′(z)=ez(z+1)⟹f(z)=(z+1)ez−ez+c=zez+c
06. Construct the analytic function f(z)=u+iv given that u=x4−y4−2xx2+y2-(OQP,MQP)
Ans:
Let f(z)=u+iv, since f is analytic, u,v satisfies CR-equations and we have u only, hence we have f′(z)=ux+ivx=ux−iuy ⟹ux=(x2+y2)(4x3−2)−(x4−y4−2x)2x(x2+y2)2uy=(x2+y2)(−4y3)−(x4−y4−2x)2y(x2+y2)2 ⟹f′(z)=((x2+y2)(4x3−2)−(x4−y4−2x)2x(x2+y2)2)−i((x2+y2)(−4y3)−(x4−y4−2x)2y(x2+y2)2) Now substitute x=z and y=0 in the above equation we get f′(z)=2z5+2z2z4−i(0)=2z+1z2⟹f(z)=z2−2z+c
07. Construct the analytic function f(z)=u+iv given that v=(r−k2r)sinθ-(MQP)
Ans:
Let f(z)=u+iv, since f is analytic, u,v satisfies CR-equations and we have u only, hence we have f′(z)=f′(reiθ)e−iθ=(ur+ivr)⟹f′(z)=e−iθ(ur+ivr)=e−iθ(vθr+ivr) ⟹vr=(1+k2r2)sinθvθ=(r−k2r)cosθ ⟹f′(z)=e−iθ[1r(r−k2r)cosθ+i(1+k2r2)sinθ] Now substitute r=z and θ=0 in the above equation we get f′(z)=1−k2z⟹f(z)=z+k2z+c
08. Construct the analytic function f(z)=u+iv given that u−v=ex(cosy−siny)
Ans:
u−v=ex(cosy−siny), Differentiate with respect to x ⟹ux−vx=ex(cosy−siny)−(1) Differentiate with respect to y ⟹uy−vy=ex(−siny−cosy) Using CR-equations, we can write the same as ⟹−vx−ux=ex(−siny−cosy)−(2) (1)+(2)⟹−2vx=−2exsiny,⟹vx=exsiny (1)−(2)⟹2ux=2excosy,⟹ux=excosy
Do it yourself
01. Construct the analytic function f(z)=u+iv given that u−v=(x−y)(x2+4xy+y2).
02. Construct the analytic function f(z)=u+iv given that u+v=1r2(cos2θ−sin2θ).
03. Construct the analytic function f(z)=u+iv given that sum of its real and imaginary parts is x3−y3+3xy(x−y).
No comments:
Post a Comment