Friday, February 14, 2020

M4.4 Problems on Analytic Functions

MathJax example
01. Show that w=z+ezw=z+ez is analytic and find dwdz.
Ans: w=f(z)=z+ezu+iv=(x+iy)+e(x+iy)=(x+iy)+exeiy=(x+iy)+ex(cosy+isiny) u=x+excosy;v=y+exsiny ux=1+excosy;vx=exsiny uy=exsiny;vy=1+excosy From the above set of equations we have ux=vy;vx=uy, hence u,v satisfies the CR-equations, Hence f is analytic
To find dwdz: Differentiate w=f(z)=u+iv with respect to x (derivative horizontally)
dwdz=f(z)=ux+ivx=1+excosy+iexsiny=1+ex(cosy+isiny)=1+exeiy=1+ex+iy=1+ez
02. Show that w=sinz is analytic and hence find dwdz.
Ans: w=f(z)=sinzu+iv=sin(x+iy)=sinxcosiy+cosxsiniy (we know that sinix=isinhx,cosix=coshx) u+iv=sinxcoshy+icosxsinhy u=sinxcoshy;v=cosxsinhy ux=cosxcoshy;vx=sinxsinhy uy=sinxsinhy;vy=cosxcoshy From the above set of equations we have ux=vy;vx=uy, hence u,v satisfies the CR-equations, Hence f is analytic
03. Construct the analytic function f(z)=u+iv given that u=log(x2+y2)
Ans:
Let f(z)=u+iv, since f is analytic, u,v satisfies CR-equations and we have u only, hence we have f(z)=ux+ivx=uxiuy Now u=log(x2+y2)=log(x2+y2)1/2=12log(x2+y2) ux=122xx2+y2uy=122yx2+y2 f(z)=122xx2+y2i122yx2+y2 Now substitute x=z and y=0 in the above equation we get f(z)=1/zf(z)=log(z) Verified using Maple

04. Construct the analytic function f(z)=u+iv given that u=e2x(xcos2yysin2y)
Ans:
Let f(z)=u+iv, since f is analytic, u,v satisfies CR-equations and we have u only, hence we have f(z)=ux+ivx=uxiuy ux=2e2x(xcos2yysin2y)+e2x(cos2y)uy=e2x(2xsin2ysin2y2ycos2y) f(z)=(2e2x(xcos2yysin2y)+e2x(cos2y))+i(e2x(2xsin2ysin2y2ycos2y)) Now substitute x=z and y=0 in the above equation we get f(z)=2e2zz+e2z+i(0)=e2z(1+2z)f(z)=(1+2z)e2z2e2z2+c=ze2z+c
05. Construct the analytic function f(z)=u+iv given that v=ex(xsiny+ycosy)
Ans:
Let f(z)=u+iv, since f is analytic, u,v satisfies CR-equations and we have v only, hence we have f(z)=ux+ivx=vy+ivx vx=ex(xsiny+ycosy)+ex(sin(y))vy=ex(xcosy+cosyysiny) f(z)=(ex(xcosy+cosyysiny))+i(ex(xsiny+ycosy)+ex(sin(y))) Now substitute x=z and y=0 in the above equation we get f(z)=ez(z+1)f(z)=(z+1)ezez+c=zez+c
06. Construct the analytic function f(z)=u+iv given that u=x4y42xx2+y2-(OQP,MQP)
Ans:
Let f(z)=u+iv, since f is analytic, u,v satisfies CR-equations and we have u only, hence we have f(z)=ux+ivx=uxiuy ux=(x2+y2)(4x32)(x4y42x)2x(x2+y2)2uy=(x2+y2)(4y3)(x4y42x)2y(x2+y2)2 f(z)=((x2+y2)(4x32)(x4y42x)2x(x2+y2)2)i((x2+y2)(4y3)(x4y42x)2y(x2+y2)2) Now substitute x=z and y=0 in the above equation we get f(z)=2z5+2z2z4i(0)=2z+1z2f(z)=z22z+c
07. Construct the analytic function f(z)=u+iv given that v=(rk2r)sinθ-(MQP)
Ans:
Let f(z)=u+iv, since f is analytic, u,v satisfies CR-equations and we have u only, hence we have f(z)=f(reiθ)eiθ=(ur+ivr)f(z)=eiθ(ur+ivr)=eiθ(vθr+ivr) vr=(1+k2r2)sinθvθ=(rk2r)cosθ f(z)=eiθ[1r(rk2r)cosθ+i(1+k2r2)sinθ] Now substitute r=z and θ=0 in the above equation we get f(z)=1k2zf(z)=z+k2z+c
08. Construct the analytic function f(z)=u+iv given that uv=ex(cosysiny)
Ans:
uv=ex(cosysiny), Differentiate with respect to x uxvx=ex(cosysiny)(1) Differentiate with respect to y uyvy=ex(sinycosy) Using CR-equations, we can write the same as vxux=ex(sinycosy)(2) (1)+(2)2vx=2exsiny,vx=exsiny (1)(2)2ux=2excosy,ux=excosy
Do it yourself
01. Construct the analytic function f(z)=u+iv given that uv=(xy)(x2+4xy+y2).
02. Construct the analytic function f(z)=u+iv given that u+v=1r2(cos2θsin2θ).
03. Construct the analytic function f(z)=u+iv given that sum of its real and imaginary parts is x3y3+3xy(xy).

No comments:

Post a Comment